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            F
or over a decade, genome sequences 

have adhered to only two standards that 

are relied on for purposes of sequence 

analysis by interested third parties ( 1,  2). 

However, ongoing developments in revolu-

tionary sequencing technologies have resulted 

in a redefi nition of traditional whole-genome 

sequencing that requires reevaluation of 

such standards. With commercially available 

454 pyrosequencing (followed by Illumina, 

SOLiD, and now Helicos), there has been an 

explosion of genomes sequenced under the 

moniker “draft”; however, these can be very 

poor quality genomes (due to inherent errors 

in the sequencing technologies, and the inabil-

ity of assembly programs to fully address these 

errors). Further, one can only infer that such 

draft genomes may be of poor quality by navi-

gating through the databases to fi nd the num-

ber and type of reads deposited in sequence 

trace repositories (and not all genomes have 

this available), or to identify the number of 

contigs or genome fragments deposited to the 

database. The diffi culty in assessing the qual-

ity of such deposited genomes has created 

some havoc for genome analysis pipelines and 

has contributed to many wasted hours. Expo-

nential leaps in raw sequencing capability and 

greatly reduced prices have further skewed the 

time- and cost-ratios of draft data generation 

versus the painstaking process of improving 

and fi nishing a genome. The result is an ever-

widening gap between drafted and fi nished 

genomes that only promises to continue ( see  

the fi gure, page 236); hence, there is an urgent 

need to distinguish good from poor data sets. 

The sequencing institutes and consortia 

whom we represent believe that a new set of 

standards is required for genome sequences. 

The following represents community-defi ned 

categories of standards that better refl ect the 

quality of the genome sequence, based on 

our understanding of the technologies, avail-

able assemblers, and efforts to improve upon 

drafted genomes. Due to the increasingly 

rapid pace of genomics, we avoided rigid 

numerical thresholds in our defi nitions to take 

into account products achieved by any com-

bination of technology, chemistry, assembler, 

or improvement and/or fi nishing process.

Standard Draft: minimally or unfiltered 

data, from any number of different sequencing 

platforms, that are assembled into contigs. This 

is the minimum standard for a submission to 

the public databases. Sequence of this quality 

will likely harbor many regions of poor qual-

ity and can be relatively incomplete. It may not 

always be possible to remove contaminating 

sequence data. Despite its shortcomings, Stan-

dard Draft is the least expensive to produce and 

still possesses useful information.

High-Quality Draft: overall coverage rep-

resenting at least 90% of the genome or tar-

get region. Efforts should be made to exclude 

contaminating sequences. This is still a draft 

assembly with little or no manual review of 

the product. Sequence errors and misassem-
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blies are possible, with no implied order and 

orientation to contigs. This is appropriate for 

general assessment of gene content.

Improved High-Quality Draft: additional 

work has been performed beyond the ini-

tial shotgun sequencing and High-Quality 

Draft assembly, by using either manual or 

automated methods. This should contain no 

discernable misassemblies and should have 

undergone some form of gap resolution to 

reduce the number of contigs and supercon-

tigs (or scaffolds). Undetectable misassem-

blies are still possible, particularly in repeti-

tive regions. Low-quality regions and poten-

tial base errors may also be present. This stan-

dard is normally adequate for comparison 

with other genomes.

Annotation-Directed Improvement: may 

overlap with the previous standards, but the 

term emphasizes the verifi cation and correc-

tion of anomalies within coding regions, such 

as frameshifts, and stop codons. It will most 

often be used in cases involving complex 

genomes where improvement beyond this cat-

egory fails to outweigh the associated costs. 

Gene models (gene calls, including intron-

exon determination for eukaryotes) and anno-

tation of the genomic content should fully sup-

port the biology of the organism and the scien-

tifi c questions being investigated. Exceptions 

to this gene-specifi c fi nishing standard should 

be noted in the submission. Repeat regions at 

this level are not resolved, so errors in those 

regions are much more likely. This standard is 

useful for gene comparisons, alternative splic-

ing analysis, and pathway reconstruction.

Noncontiguous Finished: describes high-

quality assemblies that have been subject to 

automated and manual improvement, and 

where closure approaches have been suc-

cessful for almost all gaps, misassemblies, 

and low-quality regions. Attempts have been 

made to resolve all gap and sequence uncer-

tainties, and only those recalcitrant to reso-

lution remain (with notations in the genome 

submission as to the nature of the uncer-

tainty). This product is thus of “Finished” 

quality with the only exception being repet-

itive or intractable gaps, along with hetero-

chromatic sequence for eukaryotic applica-

tions. Thus, it is appropriate for most analy-

ses. For nearly all higher organisms, this is the 

grade previously called “Finished.”

Finished: refers to the current gold stan-

dard; genome sequences with less than 1 

error per 100,000 base pairs and where each 

replicon is assembled into a single contiguous 

sequence with a minimal number of possible 

exceptions commented in the submission 

record. All sequences are complete and have 

been reviewed and edited, all known misas-

semblies have been resolved, and repetitive 

sequences have been ordered and correctly 

assembled. Remaining exceptions to highly 

accurate sequence within the euchromatin are 

commented in the submission. The Finished 

product is appropriate for all types of detailed 

analyses and acts as a high-quality reference 

genome for comparative purposes. Some 

microbial genome sequences where mul-

tiple platforms have been used for the same 

genome have exceeded this standard, and it is 

believed that no bases are incorrect except for 

natural, low-level biological variation.

Intermediate standards often overlap, and 

although we do not advocate any one stan-

dard, we recommend that the target standard 

be based on the needs and goals of each proj-

ect. There may be cases where select regions 

will be targeted for improvement and more 

than one standard may apply (such regionally 

improved sequences should be identifi ed). 

This approach is most often used for eukary-

otic whole-genome sequencing projects, 

where the cost of complete fi nishing remains 

prohibitive, and allows improvement to be 

directed at euchromatic sequence, because 

heterochromatic sequence remains largely 

recalcitrant to available approaches. Legacy 

eukaryotic tiling path standards will remain 

in use for a time.

Here, we have attempted to capture in a 

technology-independent fashion the types 

of whole-genome sequencing projects that 

are beginning to populate databases, and we 

have defi ned a set of standards that accom-

modate a growing list of alternative genome 

products that have been obtained via less 

conventional means, such as environmental 

(metagenomic) or single-cell sequencing. 

Ongoing discussions with genome database 

repositories have been met with enthusiasm, 

and the implementation of these standards 

as a requirement for genome submissions 

is expected. To aid in adoption of this clas-

sifi cation of sequence fi nishing standards, 

we have added this classification to the 

Sequence Ontology ( 3) where it can now be 

used to comply with the Genomic Standards 

Consortium’s (GSC) “Minimum Informa-

tion about a Genome Sequence” standard 

( 4) “sequencing status” descriptor. Further-

more, the efforts described here recently 

have been adopted under the umbrella of the 

GSC ( 5). This common currency in defi ning 

the products of genome projects enables bet-

ter management of expectations and allows 

users of genomic data to assess the quality 

of the deposited available sequences and 

decide whether these meet their needs. 
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