Scalable metabolic reconstruction for metagenomic data and the human microbiome

Sahar Abubucker, Nicola Segata, Johannes Goll, Alyxandria Schubert, Beltran Rodriguez-Mueller, Jeremy Zucker, the Human Microbiome Project Metabolic Reconstruction team, the Human Microbiome Consortium,

Patrick D. Schloss, Dirk Gevers, Makedonka Mitreva,

Curtis Huttenhower

Harvard School of Public Health Department of Biostatistics

03-09-11

Scale and scope of the <u>Healthy</u> Human Microbiome Project

300 People/ 15(18) Body Sites

Multifaceted data

- >12,000 samples
- >50M 16S seqs.
- 4.6Tbp unique metagenomic sequence
- >1,900 reference genomes
- Full clinical metadata

Multifaceted analyses

- Human population
- Microbial population
- Novel organisms
- Biotypes
- Viruses
- Metabolism

2 clin. centers, 4 seq. centers, data generation, technology development, computational tools, ethics...

15+ disease-related Demonstration Projects

Gastrointestinal

- Obesity
- Crohn's disease
- Ulcerative colitis
- Autoimmunity
- Cancer
- Necrotizing enterocolitis

Urogenital

- Bacterial vaginosis
- STDs
- Reproductive health

All include additional subjects and technology development

What to do with your metagenome?

MO

Diagnc progr biomar host di

Who's there? What are they doing?

What do functional genomic data tell us about microbiomes?

What can our microbiomes tell us about us?

Comprehensive

snapshot of microbial ecology

and evolution

voir of

Metabolic/Functional Reconstruction: The Goal

HMP: Metabolic reconstruction

MM

HMP: Metabolic reconstruction

MM

Pathway coverage

Pathway abundance

DOC

HUMAnN: Validating gene and pathway abundances on synthetic data

Relative Abundance

Validated on individual gene families, module coverage, and abundance

- 4 synthetic communities: Low (20 org.) and high (100 org.) complexity Even and lognormal abundances
- False negatives: short genes (<100bp), taxonomically rare pathways
- False positives: large <u>and</u> multicopy (not many in bacteria)

False positive rate

Functional modules in 741 HMP samples

- Zero microbes (of ~1,000) are core among body sites
- Zero microbes are core among individuals
- 19 (of ~220) pathways are present in every sample
- 53 pathways are present in 90%+ samples

Abundance

MA

263 pathways are differentially abundant in exactly one body site

A portrait of the human microbiome: Who's there?

With Jacques Izard

DOD

A portrait of the human microbiome: What are they doing?

MM

HMP: How do microbes vary within each body site across the population?

HMP: How do body sites compare between individuals across the population?

MOR

HMP: Penetrance of species (OTUs) across the population

Data from Pat Schlos

MX

16S OTUs

Bacteria.Fusobacteria.Fusobacteriales.Fusobacteriaceae.Fusobacterium.9 Bacteria.Firmicutes.Bacilli.Lactobacillales.Streptococcaceae.Streptococcus.6 Bacteria, Firmicutes, Clostridia, Clostridiales, Veillonellaceae, Veillonella, 4 Bacteria, Firmicutes, Bacilli, Bacillales, Staphylococcaceae, Gemella, 11 Bacteria.Proteobacteria.Gammaproteobacteria.Pasteurellales.Pasteurellaceae.unclassified.16 Bacteria.Proteobacteria.Betaproteobacteria.Neisseriales.Neisseriaceae.Neisseria.19 Bacteria, Firmicutes, Bacilli, Lactobacillales, unclassified, 13 Bacteria.Proteobacteria.Betaproteobacteria.Neisseriales.Neisseriaceae.Neisseria.8 Bacteria.Actinobacteria.Actinobacteria.Actinomycetales.Micrococcaceae.Rothia.18 Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales.Porphyromonadaceae.Porphyromonas.7 Bacteria, Actinobacteria, Actinobacteria, Actinomycetales, Propionibacteriaceae, Propionibacterium, 1 Bacteria.Proteobacteria.Gammaproteobacteria.Pasteurellales.Pasteurellaceae.unclassified.20 Bacteria.Actinobacteria.Actinobacteria.Actinomycetales.Actinomycetaceae.Actinomyces.14 Bacteroidales.Prevotellaceae.Prevotella.10 Bacteria.Bacteroidetes.unclassified.23

Bacteria.Fusobacteria.Fusobacteriales.Leptotrichiaceae.Leptotrichia.50 Bacteroidaceae.Bacteroidia.Bacteroidales.Bacteroidaceae.Bacteroides.17 Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales.Porphyromonadaceae.Parabacteroides.33 Bacteria.Actinobacteria.Actinobacteria.Actinomycetales.Actinomycetaceae.Actinomyces.21 Bacteria Firmicutes Clostridia Clostridiales Veillonellaceae Selenomonas 27 Bacteria, Firmicutes, Bacilli, Lactobacillales, Lactobacillaceae, Lactobacillus, 3 Bacteroidales.Prevotellaceae.Prevotella.24 Bacteria.Fusobacteria.Fusobacteriales.Leptotrichiaceae.Leptotrichia.48 Bacteria.Bacteroidetes.Flavobacteria.Flavobacteriales.Flavobacteriaceae.Capnocytophaga.22 Bacteria.Firmicutes.Bacilli.Lactobacillales.Streptococcaceae.Streptococcus.5 Bacteria, Firmicutes, Clostridia, Clostridiales, Veillonellaceae, Veillonella, 7 Bacteria Firmicutes Clostridia Clostridiales Veillonellaceae Dialister 60 Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales.Prevotellaceae.Prevotella.61 Bacteria.Firmicutes.Clostridia.Clostridiales.Lachnospiraceae.Catonella.62

Cumulative Penetrance

HMP: Penetrance of genera (phylotypes) across the population

Data from Pat Schlos

MM

16S Phylotypes

Bacteria.Firmicutes.Bacilli.Lactobacillales.Streptococcaceae.Streptococcus Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales.Prevotellaceae.Prevotella Bacteria.unclassified

Bacteria.Actinobacteria.Actinobacteria.Actinomycetales.Corynebacteriaceae.Corynebacterium Bacteria.Firmicutes.Clostridia.Clostridiales.Veillonellaceae.Veillonella Bacteria.Fusobacteria.Fusobacteriales.Fusobacteriaceae.Fusobacterium Bacteria.Actinobacteria.Actinobacteria.Actinomycetales.Actinomycetaceae.Actinomyces Bacteria.Firmicutes.Clostridia.Clostridiales.unclassified Bacteria.Firmicutes.Clostridia.Clostridiales.Lachnospiraceae.unclassified Bacteria.Firmicutes.Bacilli.Bacillales.Staphylococcaceae.Gemella Bacteria.Proteobacteria.Betaproteobacteria.Neisseriales.Neisseriaceae.Neisseria Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales.Porphyromonadaceae.Porphyromonas Bacteria.Proteobacteria.Gammaproteobacteria.Pasteurellales.Pasteurellaceae.unclassified Bacteria Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides Bacteria, Firmicutes, Bacilli, Lactobacillales, unclassified Bacteria, Firmicutes, Bacilli, Lactobacillales, Carnobacteriaceae, Granulicatella Bacteria.Proteobacteria.Gammaproteobacteria.Pasteurellales.Pasteurellaceae.Haemophilus Bacteria.Actinobacteria.Actinobacteria.Actinomycetales.Micrococcaceae.Rothia Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales.unclassified Bacteria.Fusobacteria.Fusobacteriales.Leptotrichiaceae.Leptotrichia Bacteria.Bacteroidetes.Bacteroidia.Bacteroidales.Prevotellaceae.unclassified Bacteria.Proteobacteria.Betaproteobacteria.Neisseriales.Neisseriaceae.unclassified Bacteria.Bacteroidetes.Flavobacteria.Flavobacteriales.Flavobacteriaceae.Capnocytophaga Bacteria.Proteobacteria.Epsilonproteobacteria.Campylobacterales.Campylobacteraceae.Campylobacter Bacteria.Firmicutes.Clostridia.Clostridiales.Veillonellaceae.unclassified Bacteria, Firmicutes, unclassified

Bacteria.Actinobacteria.Actinobacteria.Actinomycetales.Propionibacteriaceae.Propionibacterium Bacteria.Bacteroidetes.Flavobacteria.Flavobacteriales.Flavobacteriaceae.unclassified Bacteria.Actinobacteria.Actinobacteria.Actinomycetales.unclassified Bacteria.Firmicutes.Clostridia.Clostridiales.Veillonellaceae.Dialister

Cumulative Penetrance

HMP: Penetrance of pathways across the population

MM

KEGG Metabolic modules M00001: Glycolysis (Embden-Meyerhof) M00002: Glycolysis, core module 0002 Clucopogoposi M00007 Human microbiome functional structure dictated \bullet primarily by microbial niche, not host (in health) M00053: Pyrimid Huge variation among hosts in *who's there*; M small variation in what they're doing □ Anterior nares Note: definitely variation in how these Buccal_mucosa M00260: D Hard_palate functions are implemented Keratinized gingiva L Retroauricular crease MC Mid vagina Does not yet speak in detail to host M00360: Amino Palatine Tonsils M00362: Nucleo environment (diet!), genetics, or disease Posterior fornix MO R_Retroauricular_crease M00051: U Saliva Stool M00008: Entner-Doudoroff pathway Subgingival plaque M00239: Peptides/nickel transport system Supragingival_plaque M00018: Threonine biosynthesis Throat Tongue dorsum M00168: CAM (Crassulacean acid metabolism), dark Vaginal introitus

2

6

Cumulative Penetrance

8

M00167: Reductive pentose phosphate cycle

0

Population summary statistics \rightarrow population biology

 $\leftarrow \text{Individuals} \rightarrow$

MO

Posterior fornix, ref. genomes

Lactobacillus iners Lactobacillus crispatus Gardnerella vaginalis Lactobacillus jensenii Lactobacillus gasseri

Posterior fornix, functional modules

Essential amino acids

Basic biology, sugar transport

Urea cycle, amines, aromatic AAs

DOD

LEfSe

LDA + Effect Size

Nicola Segata

LEfSe: Metagenomic class comparison and explanation

Biological hypothesis

- differential analysis
- comparative analysis
- biomarker discovery
- structure of the problem
- Two (or more) conditions

LEfSe: Evaluation on synthetic data

19

Microbes characteristic of the oral and gut microbiota

oral

l gut

DOD

! ! ! !	
Bacilli	
Lactobacillales	
Streptococcaceae	
Streptococcus	
Proteobacteria	
Actinobacteria	
Actinobacteria	
Actinomycetales	
Fusobacteria	
Fusobacteria	
Fusobacteriales	
Veillonella	
Fusobacteriaceae	
Fusobacterium	
Gammaproteobacteria	
Pasteurellaceae	
Pasteurellales	
Neisseriales	
Neisseriaceae	
	Ruminococcaceae
	Bacteroidaceae
	Bacteroides
	Bacteroidetes
	Bacteroidia
	Bacteroidales
.8 -3.6 -2.4 -1.2 0	.0 1.2 2.4 3.6 4.8
LDA SCORE (log 10)	

Aerobic, microaerobic and anaerobic communities

MX

LEfSe: The TRUC murine colitis microbiota

With Wendy Garret

MM

ccaceae

NAS

Bifidobacterium animalis subsp. *lactis* fermented milk product reduces inflammation by altering a niche for colitogenic microbes

Patrick Veiga^{a,b}, Carey Ann Gallini^a, Chloé Beal^b, Monia Michaud^a, Mary L. Delaney^c, Andrea DuBois^c, Artem Khlebnikov^{b,d}, Johan E.T. van Hylckama Vlieg^b, Shivesh Punit^{a,1}, Jonathan N. Glickman^{ce,2}, Andrew Onderdonk^{ce}, Laurie H. Glimcher^{a,d,e,f}, and Wendy S. Garrett^{a,e,g,3}

^aHarvard School of Public Health, Boston, MA 02115; ^bDanone Research, 91767 Palaiseau, France ^cBrigham and Women's Hospital, Boston, MA 02115; ^dDannon Company Inc., White Plains, NY 10603; ^eHarvard Medical School, Boston, MA 02115; ^fRagon Institute of MGH, MIT and Harvard, Charlestown, MA 02129; and ^gDana Farber Cancer Institute, Boston, MA 02115 Microbial biomolecular function and biomarkers in the human microbiome: the story so far?

• Who's there changes

- What they're doing doesn't (as much)
- How they're doing it does
- The data so far only scratch the surface
 - Only 1/3 to 2/3 of the reads/sample map to cataloged gene families
 - Only 1/3 to 2/3 of these gene families have cataloged functions
 - Very much in line with MetaHIT
 - Job security!

• Looking forward to functional reconstruction...

- In environmental communities
- With respect to host environment + genetics
- With respect to host disease

Thanks!

MON

Nicola Segata

Pinaki Sarder

Levi Waldron

Larisa Miropolsky

MGH **Ramnik Xavier**

Dirk Gevers

X Wendy Garrett

Jacques Izard

Bruce Birren Mark Daly Doyle Ward Eric Alm Ashlee Earl Lisa Cosimi

SKC

Interested? We're recruiting graduate students and postdocs!

http://huttenhower.sph.harvard.edu

http://huttenhower.sph.harvard.edu/humann http://huttenhower.sph.harvard.edu/lefse

Yuzhen Ye

Owen White Sahar Abubucker Makedonka Mitreva Erica Sodergren Mihai Pop Vivien Bonazzi Jane Peterson Lita Proctor

Human Microbiome Project

George Weinstock Jennifer Wortman

> **Beltran Rodriguez-Mueller Jeremy Zucker Qiandong Zeng** Mathangi Thiagarajan Brandi Cantarel Maria Rivera **Barbara** Methe **Bill Klimke Daniel Haft HMP Metabolic Reconstruction**

HMP Research Consortium >30 POSTERS

- HMP data processing
 - POSTER 3. Metabolic reconstruction
 - POSTER 100. Read mapping
 - × POSTER 117. DACC QC
 - POSTER 163. Cumulative Abundances
- Reference Genomes
 - HMP Project Catalog
 - POSTER 93. Reference Genome Catalog
 - Reference genome annotation goals
 - POSTER 98. Ref Genome Annotation Methods
 - POSTER 122. Seq-ing and Ann. Ref at Baylor
 - Strain Access & Strain Requests
 - POSTER 35. 100 Most Wanted
 - × POSTER 170. Single Bacterial Cells
 - Downloading annotations
 - Annotation at IMG/HMP
 - WGS
 - × POSTER 2. Longitudinal assessment
 - POSTER 79, 139. PhylOTU
 - POSTER 100. Optimizing read mapping
 - × POSTER 117. Quality Control
 - Software
 - × POSTER 90. Metagenomic Assembly

- Demonstration projects
 - × POSTER 20. Crohn's disease
 - × POSTER 169. Esophageal Adenocarcinoma
 - POSTER 103. Pediatric Abdominal Pain
 - POSTER 39. Vaginal microbiome
 - POSTER 34, 109. Urethral microbiome
 - × POSTER 45. Reproductive health
 - POSTER 72. Atopic dermatitis
- Ethical implications of the HMP
 - POSTER 4. Identifiability of the Human Microbiome
 - POSTER 101. What's "Normal"
- 16S
 - POSTER 70. Greengenes 16S rRNA Database
 - POSTER 73. Classifiers on HighThroughput 16S rRNA
 - POSTER 167. Identification of Novel 16S Sequences in Metagenomic Data Sets
- Open Science Data Framework
 - POSTER 37.
- Accessing data from NCBI
 - IHMC codes POSTER 140.
- Statistical techniques
 - POSTER 77. Dirichlet Multinomial Power
 - POSTER 78. Analysis of Taxonomic Trees
 - POSTER 136. Metagenomic Biomarker Discovery